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Abstract The two-dimensional 1-3 model at low electron densities is unstable against various 
forms of electron pairing at low enough tempenfures. At parameter vslues J l t  < I ,  the 
leading instability, although only at very low temperahlq is to p-wave pairing similar to the 
Hubbard model. At values of JJt =- 1, an instability against d-wave pairing sets in ai a higher 
temperatllle as found numerically by Dagotto and co-workers. In addition, at values of J/t  > 2, 
which are beyond the threshold for a bound state in the low-eleckon-density limic a region of 
predominantly s-wave pairing is found. 

1. Introduction 

The t-J model was derived many years ago by Bulaevskii and co-workers [l] to describe 
the strong-coupling limit of the single-band Hubbard model. The study of this model 
has become very active in recent years due to Anderson's proposal 121 that it was the 
appropriate model to describe the doped C u q  planes that are the key ingredients of the 
high-T, cuprates. Later Zhang and Rice [3] elucidated the relationship of the t-J model 
to a multiband Hubbard description with Cu 3di2+ and 0 2p,  orbitals. The careful 
numerical investigation of Hybertsen and co-workers [4] established the parameter values 
in the mapping of the multiband Hubbard model for the CuOz planes into an one-band t-J 
model, namely J - 0.3t. In the single-band Hubbard model the mapping to a t-J model 
is valid only in the strong-coupling limit which leads to values J << t. In a more general 
model other values of J / t  can occur. A lot of work has been done to clarify analytically the 
relationship between the t-J and multiband Hubbards. see e.g. [5] and references therein. 
In this paper we will treat the ratio J / t  simply as a parameter to be varied arbitrarily. 

The leading pairing instability of the two-dimensional Hubbard model at strong coupling 
and low electron density was found by Baranov. Kagan and Chubukov [6,71 to  be to a p- 
wave triplet pairing. Note this instability arises only when higher-order terms are included 
in the two-particle T-mamx, and occurs only at very low temperatures. In view of the close 
relationship between the Hubbard and t-J models we expect a similar instability in the 
latter model when J << t. Recently, Dagotto and co-workers [SI found by numerical means 
pairing instabilities as precursors to phase separation. The onset in the numerical studies 
was at J = 2t which, as reported by Emery, Kivelson and Lin [9, IO], is the threshold for a 
singlet bound state of two electrons in an empty lattice. In the low-density region, electron 
density n 5 0.25, Dagotto and co-workers [8] found the leading pairing instability when 
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J 2t is to singlet s-wave pairing but at a higher density (n > 0.25) there was a crossover 
to dX+ pairing as the leading instability. 

In this paper we will extend the earlier work of Baranov, Kagan and Chubukov [6,71 
on pairing instabilities in the low-density Hubbard model to the case of the t-J model. We 
are particularly interested in understanding, from an analytic viewpoint, the factors which 
determine the competition between these three different pairing symmetries, namely triplet 
p-wave at J << t and singlet s and 6-9 pairings when J 2 f. A study of the T-matrix in 
the various symmehy channels shows how the pairing instabilities evolve with changing n 
and J/t. We find good agreement between our analytic approximations and the numerical 
calculations of the boundary between s and dXz-p pairing with increasing density n at 
J > 2t. It is interesting to note that if we arbitrarily extend these low-electron-density 
calculations to the relevant parameter regime for the cuprates ( J / 2  - $, n N 0.85), we find 
a high-temperature instability to d,z-p pairing. 

The outline of this paper is as follows. In the next section we examine the form of the 
T-matrix for particle-particle scattering in the low-density limit and obtain the thresholds 
for a two-particle bound state in both the s- and d-wave singlet channels. In the third section 
we use these forms of the T-matrix to estimate the mean field transition temperature for 
pairing instabilities in these channels and also in the p-wave triplet channel. We compare 
our results with the previous work on the Hubbard model and the numerical calculations 
for the f - J  model. The last section is devoted to concluding remarks. 
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2. The T-matrix in the particle-particle channel at low electron density 

It is convenient to write the I-J model without the local constraint in the following form: 

H = - t  ~ ~ c ~ , + ~ C ( ~ ~ . ~ ~ - f n i n j ) + ~ C n ~ ~ " ~ . l  (1) 
(W.a ( i d )  i 

where c 2  creates an electron of spin U on site i ,  ni = c;ciq and Si = $c: ( T ) ~ ~ C ~ ,  

are the electron density and spin operators, rWp = (r& . . . r&) are Pauli manices and (ij) 
denotes nearest-neighbour sites. 

The Hubbard term mimics the constraint on double occupancy in (1). By setting U = CO 
we recover the standard t -J  model for n -+ 1: 

- 
with Q, = s,(l  -nib,,) and J = J + 4t2/U (= J for U + CO). In a momentum space 
representation on the square lattice we obtain from (1) 

Jts) + +  + 

f c $ t c ~ ~ c k ~ - 9 $ c k t + 9 T  (2)  

= CEFC;mCW + T ( T U b T Y P  - G,bSrp)ck,nC~~,yck,-4Cck,+~b 
Fa ks cub  Y c 

k i k ~  

where cP = -2t(cosp, + cosp,), J ( q )  = J(cosq, + cosq,). The Iattice constant is set 
equal to one. The total interactions in the singlet (V,) and triplet (VJ channels for an 
electron pair (p, -p)  to be scattered to @', -p') are given by 
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where q = p - p' is the transferred momentum. For the pairing problem it is convenient 
to expand J ( q )  in (3) in a series with the eigenfunctions of the irreducible representations 
of the lattice symmetry group Dd. This yields 

cos qx + cos qy = cos(p, - p i )  + cos(p, - p;, = ;[(cos p x  + cos py)(co .  pi + cos p ; )  

+ (cos px - cos p y )  (cos pk - cos p;) ]  + sin pz sin p i  + sin p y  sin p:. (4) 

The first term in square brackets corresponds to the A, identical representation (s-wave 
pairing), the second term to the BI representation (dxz-yz pairing) and the last two terms 
to the two-dimensional representation E (pwave pairing). Note that for the singlet channel 
only the first two terms, which are in the square brackets, are relevant. 

Substituting the formula (4) into (3) we obtain 

V(s-wave channel) = U - J(cos px + cos py)(cos pk + cos p i )  
V(dxg-y2 channel) = -J(cosp, - cospy)(cosp~ - cosp:). (5) 

We are now ready to solve the T-matrix problem in both s-wave and d-wave channels. Let 
us consider first the s-wave channel. The Bethe-Salpeter integral equation for Tppt(E) has 
the following form: 

I 

where 

Vpp. = U - J(COS pz + COS P~)(COS p: + COS p:) = U - JpppP. 

and pp = cos p x  +cos p y .  Here (p, -p) and (p', -p')  are incoming and outgoing momenta 
in the particle-particle channel. We will use the following ansa2 for TP@: 

Tpp,(E) = + Tz(E)(pp + q p , )  + T 3 ( E ) ~ p ~ ) p c .  

Then due to the orthogonality properties of functions pp it is possible to reduce the integral 
equations (6) to the system of three algebraic equations for T I ,  Tz, 5 

where 

K is the complete elliptic integral of the first order. The other integrals are 

1 E  
Io - _ - _  - cos p x  + COS p y  

0 (k)* E + 4t (cosp, +cos py) 4t 4t 
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Solving (7) we arrive at results 

-.I(]- UZo) 
(I  - UZo)(l + J I x x )  + UJI,"' 

T3 = 

By analogy with the definition of the scattering length in quantum mechanics (Q = 
lim fpp,, f is the scattering amplitude), it is natural to define the T-matrix for two 

P'.P+O 
particles as a zero-momentum limit of Tpp,(E).  In the s-wave channel we obtain the result 

Ts(E)= lim Tpp,(E) = T , ( E ) + ~ T Z ( E ) + ~ T ~ ( E )  
P'.P+O 

which using (8) takes the form 

U(1+ JI , )  -4UJI, - 4 5 ( 1  - UZo) 
( 1  - U I o ) ( l +  J I , , ) +  VJI," TXE) = 

For U --c CO the expression (9) can be simplified to yield 

Taking into account the relations between IO on the one hand and Zx, I ,  on the other, we 
can rewrite (IO) in the form 

* 
Introducing the binding energy, E" = E + 8t < 0, we obtain for small values of IBI 

1 64t 
8nt [El  

lo=-- In -2. 

As a result, neglecting terms of $e order of E"ln E" which vanish as E" 
the following expression for '&(E): 

0, we come to 

where W = 8t is the bandwidth. 
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T,([E"I) = nW/ln(8W/IE"I) is positive which 
corresponds to repulsion and coincides with the T-matrix obtained by Fukuyama et al [ 111 
for the 2D Hubbard mogl  at low electron density. 

cor J = Jm, T,(lEl) = 0 and there is no interaction at all. However, for J > J d ,  
T,(IEI) < 0 and this corresponds to attraction. Moreover. there exists now a bound state 
of two electrons [9,10] on the empty lattice with the binding energy 

For J << Jm(= 22) the T-matrix 

Note that- IE"1 tends to zero exponentially when J approaches J d .  Finally for J >> J d  we 
obtain I&= 8Wexp(-n} - W. 

For the sake of completeness let us solve the T-matrix problem also in the d-wave 
channel. The corresponding Bethe-Salpeter equation has the following form: 

Tpp'(E) = TdCppc~p' = - J 9 p 9 @  - JTdYlpPpId (12) 

where vpp, = -J(cosp,-cospy)(cosp~ -cospi)(= - J V ~ ~ ~ P ' ) .  The integral Id  is defined 
as 

The solution of the equation (12) reads: 

and the calculation of Id yields 

where K(-8t /E)  and € ( - 8 t / E )  are complete elliptic integrals of the first and second kind 
(see FZ]). Introducing again the binding energy E"(= E + S t )  we obtain for small values 
of [El (or, E -+ -82) 

K -- = - I n -  ( :) ; ;; 

Then neglecting krms of the order of E2 we obtain the limiting value 

As a result 

I -J  
= 1 - ( J / 2 t ) ( 4 / ~  - 1) + (Jlh1/16fz)(1 -2/n) ' 
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It follows that only for J > .Id = 2t/(4/n - I) = 6t does a bound state with d-wave 
symmetry exist for two particles on the empty lattice. The binding energy of this state is 
given by 
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Note that the threshold J d  for a d;wave bound state is much larger than the threshold J d  
for an s-wave bound state. Also tends to zero linearly and ",ot exponentially when J 
approaches Jcd.  For J >> Jul. the binding energy saturates and 1 Eb I+ W. 

3. The Cooper pairing problem 

We proceed now from the two-particle problem to the problem of Cooper pairing of two 
particles in the presence of a filled Fermi sea. We know that in two dimensions it is 
obligatory for an s-wave Cooper pair to be accompanied by a bound s-wave state of two 
particles in the empty lattice [13-15]. It follows that J = Jd(= 2t) serves as a threshold 
for s-wave Cooper pairing. At the same time, to form p-wave and d-wave Cooper pairs, 
the existence of the corresponding bound state is not obligatory. 

It follows that p-wave Cooper pairs can exist for arbitrary small values of J .  Also 
d-wave Cooper pairs can be realized below the threshold for the bound state, i.e. for 
J < JCd(N 6t). 

A knowledge of the T-matrices for s-wave and d-wave bound states (E" c 0) allows us 
to obtain in straightforward manner the expressions for mean field superconducting critical 
tempatures. n-e only modifications we must introduce in the esressions (11,13) for 
T,(IEI) and T,(lEl) are the following. We must replace E < 0 by E = %F(= pg/m > 0) 
(e is the Fermi energy) and we must add imaginary parts to the denominators of (1 1) and 
(13) which are absent in the bound-state problem. To be more specific, for E" e 0 

h 10 = h Id = 0 

but for E" = ~ E F  > 0 

m 
m = 1/2t 

1 
Imro = 1:- + 4t(cos px  COS^,) - 8t]  = --II 8nt = - 4 # 0 

As a result, we obtain the following forms for the T-matrices in the positive energy sector: 
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The gas parameter for the s-wave channel is given by 

Note that for E" t 0 there is no pole in the expression for K(E) and T&). For EF = $81 
we are in a resonant situation. It follows that 

& ( ~ E F  = IEbl) = -8it Td(& = = iJcdw2/4EE 

and the T-mabices reach the unitary limit. 
Let us proceed now to the calculation of critical temperatures. For J << Ja, the gas 

parameter f~ = (h(4W/EF))-' t o and s-wave Cooper pairing is absent. However, even 
for these values of J ,  p-wave pairing and dxy pairing are possible [6.7]. To etain dxy 
pairing it is necessary to calculate the irreducible bare vertex for Cooper channel rpp' up to 
the second order in fo. For low density ( p ~  << 1) thii yields an attraction the in Bz (&) 
channel (see [6] for more details). 

2 P i  I rBI = rd,y = -fo - (sin px sin p,)(sin p: sin p,) 
- - 

320 

The mean field critical temperature for dxy pairing reads 

T,"y - EF exp -- ::I. 
To obtain p-wave pairing it is necessary to take into account third-order diagrams for rpp'. 
This yields an attraction in the E @-wave) channel (see [7] for more details) 

I - rE E rp = - 4.1 fi sin px sin p:. 

The mean field critical temperature for p-wave pairing is given by 

Tp - EF exp -- / 4.:foJ 

For low density t Ps, because fo/fl p i  = fo/p$ - l/p$ In(l/pF) >> 1. That is why 
for J << J& and n + 0 T! > TtY and the pwave pairing will be stabilized. 

To have the fulI picture for J < J d  we must also calculate the critical temperature for 
d,z+ pairing. The corresponding Bethe-Salpeter equation for the total vertex r d  in the 
Cooper channel has the following form for this d-wave pairing: 

where T is the temperature and ji = -4t + EF. 

subtraction from (16) of the integral 
After the standard renormalization procedure which corresponds to the addition and 

(cos p. - cos py)2 zn 
" J  dPxdP, 
( 2 ~ ) '  0 -4t(c0~ px + COS py) + 8t 
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we obtain for small density 

and accordingly 

Introducing electron density n = p ; / k  (n is measured in units of a half-filled band, i.e. 
n is the electron densitykite) we can rewrite the formulae (17) and (19) for the mean field 
transition temperatures for dI~-yz- and p-wave pairing in the following forms: 

A comparison of the critical temperatures yields 

for n = 0.2 

for n = 0.5 

TP C > T~'-Y' C 

TP > T:'-Y' 

for J c t 

for J c 0.6t. 

It follows that the region of the J-n phase diagram (n < 0.5; J < Jm). which in numerical 
calculations of Dagotto and co-workers [8] is called a paramagnetic phase, in reality has 
p-wave superconducting pairing for smaller values of J and dx2-yl pairing for larger J .  

Let us proceed now to the case of J z Jm. In this case an s-wave pairing takes place 
below the critical temperature (see [13-15]). 

fo = (In(4W/sB) - Jn/ (J  - J,) + in]-'; If01 denotes the absolute magnitude of fo. 

4Wexp(-Jrr/(J - Jd)) ) ,  we can rewrite (21) in the form 
Everywhere, except for a narrow region close to the resonance (EF --f I&:b1/2 = 

Formula (22) describes both the case of weakly bound Cooper pairs for EF >> lEbl and 
tightly bound dimers or 'bipolarons' (16,171 for EF << The chemical potential of 
the system, found by Miyake 1131 from the self-co_nsistent approach of Leggett [IS], reads 
p = 0 (E. >> IEbl) the superconducting Fermi gas and 
for p 0 ( E F  << I & l )  the Bose liquid of bipolarons. The energy of the system also 
smoothly interpolates between these two limits 

- IEb1/2 and describes for j~ 
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where A is a superconductive gap, N is a total number of particles and EN = ( E F / ~ ) N  is 
an energy of a normal skate. 

the energy of a superconducting state E,  
becomes negative and we pass from the gas phase to the liquid phase. Increasing J or 
[Ebl for a fixed value of Q (i.e., for fixed density) we finally will be in a situation where 
the dimers will condense in droplets, forming a non-homogeneous state. The numerical 
calculations of Dagotto and co-workers give the value Jps = 3.82 (n + 0) for the phase- 
separation instability. Note that analytical calculations of  the phase-separation threshold 
require at least the evaluation of a four-particle vertex (describing the interaction between 
two dimers) and is rather cumbersome. 

Let us now compare the temperatures of s-wave and d-wave pairing in the region n < 0.5 
and J d  < J c Jps. Comparison of formulae (19) and (22) for T:”” and T,” yields 

Formula (23) means that for &.E <( 

for J = 2.5t 

for J = 3t 

Tc-”’ > T: for n > 0.29 

T$y* > T: for n > 0.30 

z2-9 and for J close to phase separation Tc > T,“ also for n > 0.3. 

0.25 

0 

1 

Phase 
Separation 

Phase 

ne 

0.5 

0.25 

0 

Phose 
Separation 

s- wave 

0 1 2 3 4  J/ t 1 2 3 4  r/ t 

Figure 1. The phase diagram of the twodimensional I-J model showing the regions of stability 
of s-wave, p-wave and dX2+ pairing as functions of the electron density (n,) and the ratio 
(111) obtained in (a) the numerical calculations by Dagono and co-workers [8] and (b) this 
work using an analytic low-density expansion. 

It follows that, in agreement with numerical calculations of Dagotto and co-workers [8], 
when J > J d  an s-wave pairing is stabilized for smaller densities while for larger densities 
d-wave pairing is more stable. Summing up the comparison between s-wave and d-wave 
temperatures on one hand and between d-wave and p-wave temperatures on the other hand 
we conclude that for n 0.3 and for J > t ,  d-wave pairing is stabilized. Moreover when 
we increase the density it is stabilized even for smaller values of J .  For instance d-wave 
pairing is stable for n = 0.5, J = 0.6t. It follows that the increase of elecbon density 
favours a d-wave pairing. In figure 1, we show the phase diagram obtained by numerical 
and analytic methods. If we make a rough extrapolation to the region of parameters relevant 
for high-T, materials, i.e. J - i t ,  n - 0.85, we obtain from (19) 

T,”-’’(n = 0.85; J / t  = 1) - ~~eXp(-’l} - &F x - 10 K for EF - lo4 K. 
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4. Conclusions 

In conclusion, we would like to repeat that as expected, the two-dimensional t-J model at 
low electron density is equivalent for J << t to the two-dimensional Hubbard model with 
respect to superconductive pairing. It follows that for J << t the f -J  model is unstable 
towards p-wave superconductive pairing. For J > I the leading instability at low density 
in the f-J model is towards s-wave or d,z-yz pairing. Moreover, we find good agreement 
between analytic and numerical calculations for the location of s- and d-wave pairing regions, 
and the phase boundary between them in the J-n phase diagram. 
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